(二)主要方法: 1.寻求所求结论中的角与已知条件中的角的关系.把握式子的变形方向.准确运用公式, 2.三角变换主要体现在:函数名称的变换.角的变换.的变换.和积的变换.幂的变换等方面, 3.掌握基本技巧:切割化弦.异名化同名.异角化同角等. 查看更多

 

题目列表(包括答案和解析)

矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:x-3y-6=0.若点N(1,-5)在直线AD上.
(1)求点A的坐标及矩形ABCD外接圆的方程;
(2)过直线x-y+4=0上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值.

查看答案和解析>>

矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:x-3y-6=0.若点N(1,-5)在直线AD上.
(1)求点A的坐标及矩形ABCD外接圆的方程;
(2)过直线x-y+4=0上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值,并求此时
PE
PF
的值.

查看答案和解析>>

9个正数排成3行3列如下:
a11a12a13
a21a22a23
a31a32a33
其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等.已知a12=1,a23=
3
4
a32=
1
4

(1)求a11,第一行数列的公差d1,及各列数列的公比q;
(2)若保持这9个正数的位置不动,按照(1)中所求的规律排布,补做成一个
n行n列的数表.
a11 a12 a13…,a1n
a21 a22 a23…,a2n
a31 a32 a33…,a3n

an1 an2 an3…,ann
试求a11+a22+…+ann的值.

查看答案和解析>>

已知圆(x+2)2+y2=
25
4
的圆心为M,圆(x-2)2+y2=
1
4
的圆心为N,一动圆与这两圆都外切.
(1)求动圆圆心P的轨迹方程;
(2)若过点N的直线l与(1)中所求轨迹有两交点A、B,求
AM
BM
的取值范围.

查看答案和解析>>

已知P是圆F1:(x+1)2+y2=16上的动点,点F2(1,0),线段PF2的垂直平分线l与半径F1P交于点Q.
(I)当点P在圆上运动时,求点Q的轨迹C的方程.
(II)已知点M(1,
3
2
),A、B在(1)中所求的曲线C上,且
MA
+
MB
OM
(λ∈R,O是坐标原点),
(i)求直线AB的斜率;
(ii)求证:当△MAB的面积取得最大值时,O是△MAB的重心.

查看答案和解析>>


同步练习册答案