1.双曲线的定义(1)第一定义: . (2)第二定义: . 查看更多

 

题目列表(包括答案和解析)

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λμ=
3
16
,则该双曲线的离心率为(  )

查看答案和解析>>

设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1,F2分别是双曲线的左、右焦点,且|PF1|=2|PF2|,则双曲线的离心率为(  )
A、
5
B、
5
2
C、
10
D、
10
2

查看答案和解析>>

(2012•杭州二模)双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )

查看答案和解析>>

(2012•贵州模拟)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中双曲线的离心率是(  )

查看答案和解析>>

已知抛物线y2=4x的焦点F与双曲线
x2
a2
-
y2
b2
=1
的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则此双曲线的离心率为(  )
A、
3
+
2
B、2
C、
2
+1
D、
2

查看答案和解析>>


同步练习册答案