两条直线的交点: (1)交点的求法:. (2)根据方程组的解的情形讨论两条直线的位置关系: 若.则两条直线相交.有且只有一个交点, 若.则两条直线平行.没有公共点, 若.则两条直线重合.有无数个公共点. 查看更多

 

题目列表(包括答案和解析)

已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-
12
)
2
=r2
(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

查看答案和解析>>

已知椭圆
x2
2
+
y2
4
=1
与射线y=
2
x
(x≥0)交于点A,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(Ⅰ)求证:直线BC的斜率为定值,并求这个定值;
(Ⅱ)求三角形ABC的面积最大值.

查看答案和解析>>

已知中心在原点的椭圆的一个焦点为(0,
2
),且过点A(1,
2
)
,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值.
(3)求三角形ABC的面积最大值.

查看答案和解析>>

对称轴为坐标轴,顶点在坐标原点的抛物线C经过两点A(a,2a)、B(4a,4a),(其中a为正常数).
(1)求抛物线C的方程;
(2)设动点T(m,0)(m>a),直线AT、BT与抛物线C的另一个交点分别为A1、B1,当m变化时,记所有直线A1B1组成的集合为M,求证:集合M中的任意两条直线都相交且交点都不在坐标轴上.

查看答案和解析>>

已知椭圆与射线y=(x≥0)交于点A,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(Ⅰ)求证:直线BC的斜率为定值,并求这个定值;
(Ⅱ)求三角形ABC的面积最大值.

查看答案和解析>>


同步练习册答案