2.棱长为的正四面体中. . 查看更多

 

题目列表(包括答案和解析)

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>

在正四面体A-BCD中,棱长为4,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:
①BC⊥平面AMD;
②Q点一定在直线DM上;
③VC-AMD=
其中正确的是
[     ]
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为,底面对角线的长为,则侧面与底面所成的二面角等于_____。

查看答案和解析>>

在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是BC、A1D1的中点,
(1)求异面直线BC、DF所成的角的正切值;
(2)若在正方体内放置一个铁球,求可放置的最大球的体积;
(3)求证:四边形B1EDF是菱形。

查看答案和解析>>

在棱长为1的正方体ABCD﹣A1B1C1D1中,四面体ACB1D1的体积为(    )。

查看答案和解析>>


同步练习册答案