5.如图.矩形所在的平面.分别是的中点. (1)求证:平面, (2)求证: (3)若.求证:平面 查看更多

 

题目列表(包括答案和解析)

如图,矩形ABCD中,|AB|2|BC|2EFGH分别矩形四条边的中点,分别以HFEG所在直线为x轴,y轴建立平面直角坐标系,已知λλ,其中0λ1

1)求证:直线ERGR′的交点M在椭圆Γy21上;

2N直线lyx2上且不在坐标轴上的任意一点,F1F2分别为椭圆Γ的左、右焦点直线NF1NF2与椭圆Γ的交点分别为PQST是否存在点N,使直线OPOQOSOT的斜率kOPkOQkOSkOT满足kOPkOQkOSkOT0?若存在,求出点N的坐标;若不存在,说明理由

 

查看答案和解析>>

如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ=λ,其中0<λ<1.

(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ=λ,其中0<λ<1.

(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,矩形ABCD所在平面与直角三角形ABE所的平面互相垂直,AE⊥BE,M、N分别是DE、AB的中点.
求证:
(Ⅰ)MN∥平面BCE;
(Ⅱ)AE⊥MN.

查看答案和解析>>

如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点.

(1)求证:EF∥平面ABC;

(2)求证:平面EFC1⊥平面C1CBB1

(3)求异面直线AB与EB1所成的角.

查看答案和解析>>


同步练习册答案