判断对应是否为映射时.抓住两点:(1)A中元素必须都有象且唯一,(2)B中元素不一定都有原象.并且A中不同元素在B中可以有相同的象, 查看更多

 

题目列表(包括答案和解析)

A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?请说明理由.

查看答案和解析>>

A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?并说明理由.

查看答案和解析>>

A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?请说明理由.

查看答案和解析>>

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为“()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对
(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.

查看答案和解析>>

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为“()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对
(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.

查看答案和解析>>


同步练习册答案