记住以下重要公式和结论: x1 X2 - xn - P P1 P2 - Pn - (1)期望值E= x1p1 + x2p2 + - + xnpn + - ; (2)方差D= ; (3)标准差, (4)若-B(n,p),则E=np, D=npq,这里q=1- p; 查看更多

 

题目列表(包括答案和解析)

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?

查看答案和解析>>

经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),有以下的公式:
f(x)=
0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30)

(1)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强呢?
(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?
(3)若讲解这道数学题需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?

查看答案和解析>>

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>

已知各项都不为零的数列的前n项和为,向量,其中N*,且

(Ⅰ)求数列的通项公式及

(Ⅱ)若数列的前n项和为,且(其中是首项,第四项为的等比数列的公比),求证:

【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。

(1)因为,对n=1, 分别求解通项公式,然后合并。利用,求解

(2)利用

裂项后求和得到结论。

解:(1)  ……1分

时,……2分

)……5分

……7分

……9分

证明:当时,

时,

查看答案和解析>>

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:
f(x)=
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?

查看答案和解析>>


同步练习册答案