3.两条直线的位置关系: 直线方程 平行的充要条件 垂直的充要条件 备注 有斜率 已知l1:A1x+B1y+C1=0.l2:A2x+B2y+C2=0.则l1 ⊥l2的充要条件是A1A2+B1B2=0. 查看更多

 

题目列表(包括答案和解析)

已知圆C过定点A(0,a)(a>0),且在x轴上截得的弦MN的长为2a.
(1)求圆C的圆心的轨迹方程;
(2)设|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值及此时圆C的方程.△ABC中,a,b,c是内角A,B,C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是(  )

查看答案和解析>>

已知圆C过定点A(0,a)(a>0),且在x轴上截得的弦MN的长为2a.
(1)求圆C的圆心的轨迹方程;
(2)设|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值及此时圆C的方程.△ABC中,a,b,c是内角A,B,C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是(  )
A.、重合B.相交(不垂直)C.垂直D.平行

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.
(Ⅰ)若,的面积为,求的值及圆的方程;
(Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

A.(不等式选做题)若不存在实数使成立,则实数的取值集合是__________.
B. (几何证明选做题) )如图,已知ABAC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点CBD的平行线与圆相交于点E,与AB相交于点FAF=3,FB=1,EF,则线段CD的长为________.

C. (坐标系与参数方程选做题) 已知直线(t为参数)与圆C2:为参数)的位置关系不可能是________.

查看答案和解析>>


同步练习册答案