1.定义:⑴椭圆:, ⑵双曲线:,⑶抛物线:|MF|=d 查看更多

 

题目列表(包括答案和解析)

已知方程的三个实根可分别作为一椭圆,一双曲

线、一抛物线的离心率,则的取值范围是                    

    (A)     (B)      (C)       (D)

查看答案和解析>>

定义双曲正弦函数y=sin hx=
1
2
(ex-e-x),双曲余弦函数y=cos hx=
1
2
(ex+e-x).
(1)各写出四条双曲正弦函数和双曲余弦函数的性质.(定义域除外)
(2)给出双曲正切函数、双曲余切函数、双曲正割函数和双曲余割函数的定义式,探究并证明六者间的平方关系.
(3)模仿三角函数中两角的和与差关系,探究并证明双曲正弦函数、双曲余弦函数和双曲正切函数的“两角”和与差关系.

查看答案和解析>>

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

常数e=
lim
n→∞
(1+
1
n
)n=2.718281828459…
,定义函数f(x)=
ex-e-x
2
为双曲正弦函数,记为sinhx,定义函数g(x)=
ex+e-x
2
为双曲余弦函数,记为coshx.则以下三个命题正确的是
(2)
(2)
.(只需填正确命题序号)
(1)cosh(x+y)=coshx•coshy-sinhx•sinhy;
(2)sinh(x+y)=sinhx•coshy+coshx•sinhy;
(3)(sinhx)2-(coshx)2=1.

查看答案和解析>>

定义“”为双曲正弦函数,“”为双曲余弦函数,它们与正、余弦函数有某些类似的性质,如:等.请你再写出一个类似的性质:               .

查看答案和解析>>


同步练习册答案