如图.正四棱锥S-ABCD的底面边长为a.侧棱长为2a.点P.Q分别在BD和SC上.并且BP∶PD=1∶2.PQ∥平面SAD.求线段PQ的长. 解析: 要求出PQ的长.一般设法构造三角形.使PQ为其一边.然后通过解三角形的办法去处理. 作PM∥AD交CD于M连QM.∵PM∥平面SAD.PQ∥平面SAD. ∴平面PQM∥平面SAD.而平面SCD分别与此两平行平面相交于QM.SD. ∴QM∥SD. ∵BC=a,SD=2a. ∴=. ∴==,MP=a, ===. ∴MQ=SD=a,又∠PMQ=∠ADS. ∴cos∠PMQ=cos∠ADS==. 在ΔPMQ中由余弦定理得 PQ2=(a)2+(a)2-2·a·a·=a2. ∴PQ=a. 评析:本题的关键是运用面面平行的判定和性质.结合平行线截比例线段定理.最后由余弦定理求得结果.综合性较强. 查看更多

 

题目列表(包括答案和解析)

如图,正四棱锥SABCD的底面边长为a,侧棱长为2a,点PQ分别在BDSC上,并且BPPD=1∶2,PQ∥平面SAD,求线段PQ的长.

查看答案和解析>>

如图,正四棱锥S-ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为(    )。

查看答案和解析>>

如图,正四棱锥S-ABCD 的底面是边长为a正方形,O为底面对角线交点,侧棱长是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,F为SD中点,求证:BF∥平面PAC;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

如图,正四棱锥S-ABCD 的底面是边长为a正方形,O为底面对角线交点,侧棱长是底面边长的数学公式倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,F为SD中点,求证:BF∥平面PAC;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

如图,正四棱锥S-ABCD 的底面是边长为a的正方形,O为底面对角线交点,侧棱长是底面边长的倍,P为侧棱SD上的点,
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,F为SD中点,求证:BF∥平面PAC;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>


同步练习册答案