题目列表(包括答案和解析)
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数
、
、
满足
,则称
比
远离
.
(1)若
比1远离0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
远离
;
(3)已知函数
的定义域
.任取
,
等于
和
中远离0的那个值.写出函数
的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
[番茄花园1]22.
| an+1 |
| an |
| ||
|
(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数
是
图像上的两点,横坐标为
的点
满足
(
为坐标原点).
(1)求证:
为定值;
(2)若![]()
,
求
的
值;
(3)在(2)的条件下,若![]()
,
为数列
的前
项和,若
对一切
都成立,试求实数
的取值范围.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
已知
的顶点
在椭圆
上,
在直线
上,
且
.
(1)求边
中点的轨迹方程;
(2)当
边通过坐标原点
时,求
的面积;
(3)当
,且斜边
的长最大时,求
所在直线的方程.
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.
已知抛物线
(
且
为常数),
为其焦点.
(1)写出焦点
的坐标;
(2)过点
的直线与抛物线相交于
两点,且
,求直线
的斜率;
(3)若线段
是过抛物线焦点
的两条动弦,且满足
,如图所示.求四边形
面积的最小值
.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com