设数列的前项和为.. 对任意.向量.都满足.求. 解 因为.所以由条件可得.. 即数列是公比的等比数列. 又.所以.. 2007-2008年联考题 查看更多

 

题目列表(包括答案和解析)

在数列中,,且对任意的,都有.

(1)求证:数列是等差数列;

(2)设数列的前项和为,求证:对任意的,都为定值.

 

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(Ⅰ)求数列与数列的通项公式;

(Ⅱ)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;

(Ⅲ)记,设数列的前项和为,求证:对任意正整数都有

查看答案和解析>>

(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记
(Ⅰ)求数列与数列的通项公式;
(Ⅱ)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;
(Ⅲ)记,设数列的前项和为,求证:对任意正整数都有

查看答案和解析>>

(此题8、9、10班做)(本小题满分13分)
设数列的前项和为,对一切,点都在函数 的图象上.
(Ⅰ)求及数列的通项公式
(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;
(Ⅲ)令),求证:

查看答案和解析>>

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有;

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

 

查看答案和解析>>


同步练习册答案