(南昌市2007-2008学年度高三第一轮复习训练)已知递增等比数列{an}满足:a2+a3+a4=28且a3+2是a2和a4的等差中项. ⑴求数列{an}的通项公式, ⑵若.Sn=b1+b2+-+bn.求 解 :(1)设公比为.则. 据题意得: 所以 (2)因为 所以 故 查看更多

 

题目列表(包括答案和解析)

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若bn=anlog
12
an
,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

查看答案和解析>>

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

查看答案和解析>>

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若数学公式,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

查看答案和解析>>

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若bn=anlog
1
2
an
,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

查看答案和解析>>

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

查看答案和解析>>


同步练习册答案