题目列表(包括答案和解析)
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数
、
、
满足
,则称
比
远离
.
(1)若
比1远离0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
远离
;
(3)已知函数
的定义域
.任取
,
等于
和
中远离0的那个值.写出函数
的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
[番茄花园1]22.
| an+1 |
| an |
| ||
|
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为
,公差为
的无穷等差数列
的子数列问题,为此,他取了其中第一项
,第三项
和第五项
.
(1) 若
成等比数列,求
的值;
(2) 在
,
的无穷等差数列
中,是否存在无穷子数列
,使得数列
为等比数列?若存在,请给出数列
的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数
,公比为正整数
(
)的无穷等比数 列
,总可以找到一个子数列
,使得
构成等差数列”. 于是,他在数列
中任取三项
,由
与
的大小关系去判断该命题是否正确. 他将得到什么结论?
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
设
,常数
,定义运算“
”:
,定义运算“
”:
;对于两点
、
,定义
.
(1)若
,求动点
的轨迹
;
(2)已知直线
与(1)中轨迹
交于
、
两点,若
,试求
的值;
(3)在(2)中条件下,若直线
不过原点且与
轴交于点S,与
轴交于点T,并且与(1)中轨迹
交于不同两点P、Q
, 试求
的取值范围.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com