例2 设是首项为1的正项数列.且满足.则它的通项公式 . 解析:由.得. 由.得. .即. 所以.. 将以上个式子累乘.得. 因为.所以. 点评:形如的递推数列求通项适用此法. 查看更多

 

题目列表(包括答案和解析)

对数列,规定为数列的一阶差分数列,其中。对正整数k,规定的k阶差分数列,其中

(1)       若数列首项,且满足,求数列的通项公式;

(2)       对(1)中的数列,是否存在等差数列,使得对一切正整数都成立?若存在,求数列的通项公式;若不存在,请说明理由;

(3)       令,设,若恒成立,求最小的正整数M的值。

 

查看答案和解析>>

对数列,规定为数列的一阶差分数列,其中。对正整数k,规定的k阶差分数列,其中

(1)       若数列首项,且满足,求数列的通项公式;

(2)       对(1)中的数列,是否存在等差数列,使得对一切正整数都成立?若存在,求数列的通项公式;若不存在,请说明理由;

(3)       令,设,若恒成立,求最小的正整数M的值。

 

查看答案和解析>>

若数列{an}满足
a
2
n
-
a
2
n-1
=p
(p为常数,n≥2,n∈N*),则称数列{an}为等方差数列,p为公方差,已知正数等方差数列{an}的首项a1=1,且a1,a2,a5成等比数列,a1≠a2,设集合A={Tn|Tn=
1
a1+a2
+
1
a2+a3
+…+
1
an+an+1
,1≤n≤100,n∈N*}
,取A的非空子集B,若B的元素都是整数,则B为“完美子集”,那么集合A中的完美子集的个数为(  )

查看答案和解析>>

若数列{an}满足
a2n
-
a2n-1
=p
(p为常数,n≥2,n∈N*),则称数列{an}为等方差数列,p为公方差,已知正数等方差数列{an}的首项a1=1,且a1,a2,a5成等比数列,a1≠a2,设集合A={Tn|Tn=
1
a1+a2
+
1
a2+a3
+…+
1
an+an+1
,1≤n≤100,n∈N*}
,取A的非空子集B,若B的元素都是整数,则B为“完美子集”,那么集合A中的完美子集的个数为(  )
A.64B.63C.32D.31

查看答案和解析>>

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定 {△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
c1
a1
+
c2
a2
+
c3
a3
+…+
cn
an
,若Tn<m成立,求最小正整数m的值.

查看答案和解析>>


同步练习册答案