19.(I)证明:取SD中点E.连接AE.NE. 则 四边形AMNE为平行四边形. ----1分 又平面SAD ----3分 (2)平面ABCD. . 底面ABCD为矩形. 又 平面SAD. 即为二面角S-CD-A的平面角. 即 ----5分 为等腰直角三角形. 平面SAD. 又平面SCD 平面SCD. 平面SMC. 平面SMC平面SCD ----8分 (3).设AD=SA=a.则CD 由(2)可得MN平面SCD. 即为SM在平面SCD内的射影 即为直线SM与平面SCD所成角. 即 ----9分 而MN=AE= 中.而 中.由得 解得 当时.直线SM与平面SCD所成角为 ----12分 查看更多

 

题目列表(包括答案和解析)

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB

(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本试题主要考查了立体几何中的运用。

(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE为等腰三角形.

取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =

连接FG,则FG∥EC,FG⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

连接AG,AG= 2 ,FG2= DG2-DF2 =

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小为120°

 

查看答案和解析>>

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求证:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二问中解:取PD的中点E,连接CE、BE,

为正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,

∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。

 

查看答案和解析>>

精英家教网一个四棱锥的三视图如图所示,E为侧棱PC上一动点.
(I)画出该四棱锥的直观图,并求它的侧面积
(II)取PC中点E,求证:PA∥面EBD.

查看答案和解析>>

在矩形ABCD中,AB=2,BC=1,取AB中点E,CD中点F,若沿EF将矩形AEFD折起,使得平面AEF⊥平面EFB,则AE中点Q到平面BFD的距离为
2
2
2
2

查看答案和解析>>


同步练习册答案