(二)圆锥曲线 1.椭圆及其标准方程 2.双曲线及其标准方程: 3.抛物线及其标准方程: 直线与圆锥曲线: 注意点: (1)注意防止由于“零截距 和“无斜率 造成丢解 (2)要学会变形使用两点间距离公式.当已知直线的斜率 时.公式变形为或,当已知直线的倾斜角时.还可以得到或 (3)灵活使用定比分点公式.可以简化运算. (4)会在任何条件下求出直线方程. (5)注重运用数形结合思想研究平面图形的性质 解析几何中的一些常用结论: 1.直线的倾斜角α的范围是[0.π) 2.直线的倾斜角与斜率的变化关系:当倾斜角是锐角是.斜率k随着倾斜角α的增大而增大.当α是钝角时.k与α同增减. 3.截距不是距离.截距相等时不要忘了过原点的特殊情形. 4.两直线:L1 A1x+B1y+C1=0 L2: A2x+B2y+C2=0 L1⊥L2A1A2+B1B2=0 5.两直线的到角公式:L1到L2的角为θ.tanθ= 夹角为θ.tanθ=|| 注意夹角和到角的区别 6.点到直线的距离公式.两平行直线间距离的求法. 7.有关对称的一些结论 ① 点(a.b)关于x轴.y轴.原点.直线y=x的对称点分别是 .(b.a) ② 如何求点(a.b)关于直线Ax+By+C=0的对称点 ③ 直线Ax+By+C=0关于x轴.y轴.原点.直线y=x的对称的直线方程分别是什么.关于点(a.b)对称的直线方程有时什么? ④ 如何处理与光的入射与反射问题? 8.曲线f(x,y)=0关于下列点和线对称的曲线方程为: (2)x轴 (3)y轴 (4)原点 (5)直线y=x (6)直线y=-x (7)直线x=a 9.点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系. 点P(x0,y0),圆的方程:(x-a)2+(y-b)2=r2. 如果(x0-a)2+(y0-b)2>r2点P(x0,y0)在圆外, 如果 (x0-a)2+(y0-b)2<r2点P(x0,y0)在圆内, 如果 (x0-a)2+(y0-b)2=r2点P(x0,y0)在圆上. 10.圆上一点的切线方程:点P(x0,y0)在圆x2+y2=r2上.那么过点P的切线方程为:x0x+y0y=r2. 11.过圆外一点作圆的切线.一定有两条.如果只求出了一条.那么另外一条就是与x轴垂直的直线. 12.直线与圆的位置关系.通常转化为圆心距与半径的关系.或者利用垂径定理.构造直角三角形解决弦长问题.d>r相离 d=r相切 d<r相交 13.圆与圆的位置关系.经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d.两圆的半径分别为r,R d>r+R两圆相离 d=r+R两圆相外切 |R-r|<d<r+R两圆相交 d=|R-r|两圆相内切 d<|R-r|两圆内含 d=0.两圆同心. 14.两圆相交弦所在直线方程的求法: 圆C1的方程为:x2+y2+D1x+E1y+C1=0. 圆C2的方程为:x2+y2+D2x+E2y+C2=0. 把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=0 15.圆上一定到某点或者某条直线的距离的最大.最小值的求法. 16.焦半径公式:在椭圆=1中.F1.F2分别左右焦点.P(x0,y0)是椭圆是一点.则:(1)|PF1|=a+ex0 |PF2|=a-ex0 (2)三角形PF1F2的面积如何计算 17.圆锥曲线中到焦点的距离问题经常转化为到准线的距离. 18.直线y=kx+b和圆锥曲线f(x,y)=0交于两点P1(x1,y1) ,P2(x2,y2) 则弦长P1P2= 19.双曲线的渐近线的求法已知双曲线的渐近线方程如何设双曲线的方程. 20.抛物线中与焦点有关的一些结论: 解题思路与方法: 高考试题中的解析几何的分布特点是除在客观题中有4个题目外.就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题.直线和圆锥曲线的位置关系.关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题: (1)在解答有关圆锥曲线问题时.首先要考虑圆锥曲线焦点的位置.对于抛物线还应同时注意开口方向.这是减少或避免错误的一个关键. (2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时.可以利用方程组消元后得到二次方程.用判别式进行判断.但对直线与抛物线的对称轴平行时.直线与双曲线的渐近线平行时.不能使用判别式.为避免繁琐运算并准确判断特殊情况.此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线.通过图形求解. 当直线与圆锥曲线相交时:涉及弦长问题.常用“韦达定理法 设而不求计算弦长,涉及弦长的中点问题.常用“差分法 设而不求.将弦所在直线的斜率.弦的中点坐标联系起来.相互转化.同时还应充分挖掘题目的隐含条件.寻找量与量间的关系灵活转化.往往就能事半功倍. (3)求圆锥曲线方程通常使用待定系数法.若能据条件发现符合圆锥曲线定义时.则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点.准线有关问题.也可反用圆锥曲线定义简化运算或证明过程. 一般求已知曲线类型的曲线方程问题.可采用“先定形.后定式.再定量 的步骤. 定形--指的是二次曲线的焦点位置与对称轴的位置. 定式--根据“形 设方程的形式.注意曲线系方程的应用.如当椭圆的焦点不确定在哪个坐标轴上时.可设方程为mx2+ny2=1(m>0,n>0). 定量--由题设中的条件找到“式 中特定系数的等量关系.通过解方程得到量的大小. (4)在解与焦点三角形(椭圆.双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时.一般需使用正余弦定理.和分比定理及圆锥曲线定义. (5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长.中点弦.定比分点弦.弦对定点张直角等方面的应用. (6)求动点轨迹方程是解析几何的重点内容之一.它是各种知识的综合运用.具有较大的灵活性.求动点轨迹方程的实质是将“曲线 化成“方程 .将“形 化成“数 .使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法.定义法.几何法.代入转移法.参数法.交轨法等.解题时.注意求轨迹的步骤:建系.设点.列式.化简.确定点的范围. (7)参数方程.请大家熟练掌握公式.后用化归的思想转化到普通方程即可求解. 查看更多

 

题目列表(包括答案和解析)

x2
m
-
y2
n
=1
(其中m,n∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为(  )

查看答案和解析>>

命题“若过双曲线
x2
3
-y2=1的一个焦点F作与x轴不垂直的直线交双曲线于A、B两点,线段AB的垂直平分线交X轴于点M则
|AB|
|FM|
为定值,且定值为
3

(1)试类比上述命题,写出一个关于椭圆C:
X2
25
+
Y2
9
=1的类似的正确命题,并加以证明;
(2)试推广(1)中的命题,给出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不证明).

查看答案和解析>>

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

(2011•广安二模)命题“若过双曲线
x2
3
-y2=1
的一个焦点F作与X轴不垂直的直线交双曲线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值为
3
”.
(1)试类比上述命题,写出一个关于抛物线y2=4x的类似的正确命题,并加以证明;
(2)试推广(1)中的命题,给出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不证明).

查看答案和解析>>

x2
m
-
y2
n
=1
(其中m,n∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为(  )
A.
1
2
B.
4
7
C.
2
3
D.
3
4

查看答案和解析>>


同步练习册答案