题目列表(包括答案和解析)
已知向量a=(Asin ωx,Acos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ为锐角.f(x)的图象的两个相邻对称中心的距离为
,且当x=
时,f(x)取得最大值3.
(1)求f(x)的解析式;
(2)将f(x)的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g(x)的图象,若g(x)为奇函数,求φ的最小值.
若|sin(4π-α)|=sin(π+α),则角α的取值范围是________.
[答案] [2kπ-π,2kπ],(k∈Z)
[解析] ∵|sin(4π-α)|=sin(π+α),
∴|sinα|=-sinα,∴sinα≤0,
∴2kπ-π≤α≤2kπ,k∈Z.
已知sina=
,aÎ(
,p),cosb=-
,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
【解析】第一问中∵ aÎ(
,p),∴ cosa=-
=-
, ∵ b是第三象限的角,
∴ sinb=-
=-
,
cos(a-b)=cosa·cosb+sina·sinb =(-
)×(-
)+
×(-
)=-
⑵ 中sin(a+b)=sina·cosb+cosa·sinb =
×(-
)+(-
)×(-
)=
⑶ 利用二倍角的正切公式得到。∵tana=
=-
∴tan2a=
=
=-
解∵ aÎ(
,p),∴ cosa=-
=-
, …………1分
∵ b是第三象限的角,∴ sinb=-
=-
, ………2分
⑴ cos(a-b)=cosa·cosb+sina·sinb …………3分
=(-
)×(-
)+
×(-
)=-
………………5分
⑵ sin(a+b)=sina·cosb+cosa·sinb ……………………6分
=
×(-
)+(-
)×(-
)=
…………………8分
⑶ ∵tana=
=-
…………………9分
∴tan2a=
………………10分
=
=-![]()
已知向量
=
;令f(x)=(
+
)2,
(1)求f(x)解析式及单调递增区间;
(2)若x∈
,求函数f(x)的最大值和最小值;
(3)若f(x)=
,求sin(x-
)的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com