设数列满足 (Ⅰ) 证明:对一切正整数成立, (Ⅱ)令判断与的大小.并说明理由. 查看更多

 

题目列表(包括答案和解析)

设数列{an} 的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列
(3)证明:对一切正整数n,有
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
1
2
an2和an的等差中项
(Ⅰ)证明:数列为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1

(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式2Sn-4200>
a
2
n
2
恒成立,试问:这样的正整数m共有多少个.

查看答案和解析>>

设数列{an}满足a1=2,an+1=an+(n=1,2,3,…).

(1)证明:an对一切正整数n成立;

(2)令bn=(n=1,2,3,…),判断bn与bn+1的大小,并说明理由.

查看答案和解析>>

设数列{an}的前n项和为Sn,满足数学公式,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有数学公式

查看答案和解析>>

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
1
2
an2和an的等差中项
(Ⅰ)证明:数列为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1

(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式2Sn-4200>
a2n
2
恒成立,试问:这样的正整数m共有多少个.

查看答案和解析>>


同步练习册答案