解: (Ⅰ)由于的横坐标构成以为首项,为公差的等差数列, 故. -----..3分 又位于函数的图象上, 所以. ------..5分 所求点的坐标为(. -----.6分 (Ⅱ)证明:由题意可设抛物线的方程为,即. 由抛物线过点,于是有. 由此可得. ------9分 故. 所以, ----.11分 于是 . 故. ------14分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx,g(x)=
1
2
x2+a
(a为常数),若直线l与y=f(x),y=g(x)的图象都相切,且l与y=f(x)图象的切点的横坐标为1
(Ⅰ)求直线l的方程及a的值;
(Ⅱ)若h(x)=f(x+1)-g'(x),求y=h(x)的单调递增区间;
(Ⅲ)当k≥
1
2
时,讨论关于x的方程f(x2+1)-g(x)=k的实数解的个数.

查看答案和解析>>

已知函数f(x)=
1
2
sin2xsinθ+cos2xcosθ-
1
2
sin(
π
2
+θ)(0<θ<π)
,其图象经过点(
π
6
1
2

(1)求f(θ)的值
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的
1
2
,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)=k在[0,
π
4
]
上只有唯一解,求实数k的取值范围.

查看答案和解析>>

已知函数f(x)=
1
2
x2+(a-3)x+lnx

(Ⅰ)若函数f(x)是定义域上的单调函数,求实数a的最小值;
(Ⅱ)方程f(x)=(
1
2
-a)x2+(a-2)x+2lnx
.有两个不同的实数解,求实数a的取值范围;
(Ⅲ)在函数f(x)的图象上是否存在不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,有f′(x0)=
y1-y2
x1-x2
成立?若存在,请求出x0的值;若不存在,请说明理由.

查看答案和解析>>

已知二阶矩阵M=(
a1
0b
)有特征值λ1=2及对应的一个特征向量
e
1
=
1
1

(Ⅰ)求矩阵M;
(II)若
a
=
2
1
,求M10
a

(2)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
  (θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2C,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
(3)已知函数f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)当m=5时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.

查看答案和解析>>

方程x2-cosx=0的解可视为函数y=cosx的图象与函数y=x2的图象交点的横坐标.方程x2-10xsin
πx2
+1=0
实数解的个数为
 

查看答案和解析>>


同步练习册答案