题目列表(包括答案和解析)
⊙O1和⊙O2的极坐标方程分别为
,
.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式
,
,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I)
,
,由
得
.所以
.
即
为⊙O1的直角坐标方程.
同理
为⊙O2的直角坐标方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由
,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
已知
中,
,
.设
,记
.
(1) 求
的解析式及定义域;
(2)设
,是否存在实数
,使函数
的值域为
?若存在,求出
的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.显然,
,则
1
当m>0的值域为![]()
m+1=3/2,n=1/2
2
当m<0,不满足
的值域为
;
因而存在实数m=1/2
的值域为
.
已知正数数列{an }中,a1 =2.若关于x的方程
(
)对任意自然数n都有相等的实根.
(1)求a2 ,a3的值;
(2)求证![]()
【解析】(1)中由题意得△
,即
,进而可得
,.
(2)中由于
,所以
,因为
,所以数列
是以
为首项,公比为2的等比数列,知数列
是以
为首项,公比为
的等比数列,利用裂项求和得到不等式的证明。
(1)由题意得△
,即
,进而可得
(2)由于
,所以
,因为
,所以数列
是以
为首项,公比为2的等比数列,知数列
是以
为首项,公比为
的等比数列,于是
,
所以![]()
已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意正整数n,都能使m整除f(n),猜测出最大的m的值。并用数学归纳法证明你的猜测是正确的。
【解析】本试题主要考查了归纳猜想的运用,以及数学归纳法的证明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后证明n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) 证明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
证明 n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2)
f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com