9.已知抛物线C的方程为x2=y.过点A和点B(t,3)的直线与抛物线C没有公共点.则实数t的取值范围是 ( ) A. B. C. D. 答案:D 解析:如图.设过A的直线方程为y=kx-1.与抛物线方程联立得x2-kx+=0.Δ=k2-2=0.k=±2.求得过A的抛物线的切线与y=3的交点为.则当过点A和点B(t,3)的直线与抛物线C没有公共点.实数t的取值范围是.故选D. 查看更多

 

题目列表(包括答案和解析)

已知抛物线C的方程为x2=2py(p>0),O为坐标原点,F为抛物线焦点,直线y=x截抛物线C所得弦|ON|=4
2

(1)求抛物线C的方程;
(2)若直线过点F交抛物线于A,B两点,交x轴于点M,且
MA
=a
AF
MB
=b
BF
,对任意的直线l,a+b是否为定值?若是,求出a+b的值;否则,说明理由.

查看答案和解析>>

已知抛物线C的方程为x2=4y.设动点E(a,-2 ),其中a∈R,过点E分别作抛物线C的两条切线EA,EB,切点为A(x1,y1)、B(x2,y2).
(1)求证:A,E,B三点的横坐标依次成等差数列;
(2)求直线AB经过的定点坐标.

查看答案和解析>>

已知抛物线C的方程为x2=2py(p>0),焦点F为 (0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

精英家教网已知抛物线C的方程为x2=4y,直线y=2与抛物线C相交于M,N两点,点A,B在抛物线C上.
(Ⅰ)若∠BMN=∠AMN,求证:直线AB的斜率为定值;
(Ⅱ)若直线AB的斜率为
2
,且点N到直线MA,MB的距离的和为8,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>


同步练习册答案