等差数列;; 等比数列中; 当q=1,Sn=na1 ,当q≠1,Sn==. 查看更多

 

题目列表(包括答案和解析)

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 011项的等比数列{bn}中,相应的有等式
b1b3b5b2011
b2•b4•b6…b2010
=b1 006
b1b3b5b2011
b2•b4•b6…b2010
=b1 006
成立.

查看答案和解析>>

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 013项的等比数列{bn}中,相应的有等式
b1b3b2013
b2b4b2012
=b1007
b1b3b2013
b2b4b2012
=b1007
成立.

查看答案和解析>>

已知在等差数列{an}中,a3=3,前7项和S7=28.
(I)求数列{an}的公差d;
(Ⅱ)若数列{bn}为等比数列,且b1=a2,b2=a4,求数列{bn}的前n项和Tn(n∈N*

查看答案和解析>>

(2011•浦东新区三模)某同学将命题“在等差数列{an}中,若p+m=2n,则有ap+am=2an(p,m,n∈N*)”改写成:“在等差数列{an}中,若1×p+1×m=2×n,则有1×ap+1×am=2×an(p,m,n∈N*)”,进而猜想:“在等差数列{an}中,若2p+3m=5n,则有2ap+3am=5an(p,m,n∈N*).”
(1)请你判断以上同学的猜想是否正确,并说明理由;
(2)请你提出一个更一般的命题,使得上面这位同学猜想的命题是你所提出命题的特例,并给予证明.
(3)请类比(2)中所提出的命题,对于等比数列{bn},请你写出相应的命题,并给予证明.

查看答案和解析>>

在等差数列{an}中,a1=9,公差d=2,等比数列{bn}中,b1b2b3=729,公比q=3.
(1)写出数列{an}的通项公式;
(2)写出数列{bn}的通项公式;
(3)设数列cn=anbn+9,是否存在不小于2的自然数m,使得对于任意自然数n,cn都能被m整除?如果存在,求出最大的m的值;如果不存在,说明理由.

查看答案和解析>>


同步练习册答案