题目列表(包括答案和解析)
已知函数
的定义域为
且
,对任意
都有![]()
![]()
数列
满足
N
.证明函数
是奇函数;求数列
的通项公式;令
N
, 证明:当
时,
.
(本小题主要考查函数、数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
分析法
证明命题时,我们还常常从要证的_________出发,逐步寻求使它成立的充分条件,直至所需条件为_________或_________(定义,公理或已证明的定理,性质等),从而得出要证的命题成立,这种证明方法叫做_________,这是一种_________的思考和证明方法.
分析法是探求命题结论成立的_________条件,用分析法证明不等式的逻辑关系是(_________)B
B1
B2
B3
B4
…
A(_________).
| a | 2 1 |
| a | 2 2 |
| 1. |
| 2 |
| a | 2 1 |
| a | •2 2 |
| 1 |
| 2 |
已知
的三边长分别为
,其面积为
,则
的内切圆的半径
.这是一道平面几何题,其证明方法采用“等面积法”.请用类比推理方法猜测对空间四面体
的内切球的半径存在类似结论为:____________________________________
____________________________________________________________________________
____________________________________________________________________________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com