不重合的三条直线.若相交于一点.可以确定 平面,若相交于两点可确定 平面,若相交于三点可确定 平面,不重合的四条直线.若相交于一 点.可以确定 平面. 查看更多

 

题目列表(包括答案和解析)

已知:①平面α和平面β只有一个公共点;②若一条直线与两条平行线中的一条相交,则它与另一条相交;③不共面的四点中,任何三点不共线;④有三个公共点的两平面必重合;⑤若一条直线垂直于两条平行线中的一条,则它垂直于另一条.其中正确的是________.

查看答案和解析>>

(08年鹰潭市二模理)有以下几个命题

 ①曲线平移可得曲线

②直线AB与平面相交于点B,且AB与内相交于点C的三条互不重合的直线CD、CE、CF所成的角相等,则AB⊥

③已知椭圆与双曲线有相同的准线,则动点的轨迹为直线

④若直线在平面内的射影依次为一个点和一条直线,且,则

⑤设A、B为平面上两个定点,P为动点,若,则动点P的轨迹为圆

其中真命题的序号为               ;(写出所有真命题的序号) 

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,

OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交

于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件

的点P的坐标;若不存在,请说明理由;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成

为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

 

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>


同步练习册答案