例3 求过点且与轴的交点到的距离为5的直线方程. 误:设直线的斜率为.则其方程为. 则其与轴的交点为. .解得. 故所求直线方程为. 析:本题由于只注意了直线的斜率存在的情况而忽视了直线的斜率不存在的情况.即过点且垂直于轴的直线而导致错误.其实直线也适合题意.故所求直线方程为或. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F的直线l依次与抛物线E及圆x2+(y-1)2=1交于A、C、D、B四点.
(1)求抛物线E的方程;
(2)探究|AC|•|BD|是否为定值,若是,求出该定值;若不是,请说明理由;
(3)过点F作一条直线m与直线l垂直,且与抛物线交于M、N两点,求四边形AMBN面积最小值.

查看答案和解析>>

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5,
(Ⅰ)求抛物线G的方程;
( Ⅱ)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A,C,D,B四点,试证明|AC|·
|BD|为定值;
(Ⅲ)过A,B分别作抛物线G的切线l1,l2,且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC||BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F的直线l依次与抛物线E及圆x2+(y-1)2=1交于A、C、D、B四点.
(1)求抛物线E的方程;
(2)探究|AC|•|BD|是否为定值,若是,求出该定值;若不是,请说明理由;
(3)过点F作一条直线m与直线l垂直,且与抛物线交于M、N两点,求四边形AMBN面积最小值.

查看答案和解析>>


同步练习册答案