题目列表(包括答案和解析)
设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.
(1)求证: f(0)=1,且当x<0时,f(x)>1;
(2)求证:f(x)在R上单调递减;
(3)设集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=
,求a的取值范围.
设函数f(x)定义在R上,对于任意实数m,n,总有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.
(1)证明:f(0)=1,且x<0时f(x)>1
(2)证明:函数在R上单调递减
(3)设![]()
,确定a的取值范围.
设函数f(x)定义在R上,它的图像关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有
A.![]()
B.![]()
C.![]()
D.![]()
设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com