11.设f(x)=问a.b为何值时.f(x)在定义区间内连续? [解析] li f(x)=li (x+a) =a=f(0). li f(x)=li (x2+1)=1. ∴a=1时.f(x)在x=0处连续. li f(x)=li (x2+1)=2=f(1). li f(x)=li =b. ∴b=2时.函数f(x)在x=1处连续.而初等函数在其定义域内均为连续函数. ∴当a=1.b=2时.f(x)在内连续. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.

(Ⅰ)求实数a,b的值及函数f(x)的表达式;

(Ⅱ)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?

 

查看答案和解析>>

(本题满分14分)
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.
(Ⅰ)求实数a,b的值及函数f(x)的表达式;
(Ⅱ)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?

查看答案和解析>>

请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,EFAB上,是被切去的一个等腰直角三角形,斜边的两个端点,设AEFBx(cm).

①某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
②某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,EFAB上,是被切去的一个等腰直角三角形,斜边的两个端点,设AEFBx(cm)

某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

 

查看答案和解析>>

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
 
(1)某广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)某厂商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>


同步练习册答案