2.函数表达式的求法:①定义法,②换元法,③待定系数法. 查看更多

 

题目列表(包括答案和解析)

函数零点的求法

求函数y=f(x)的零点:

(1)代数法:求方程f(x)=0的________;

(2)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用________找出零点.

查看答案和解析>>

今有一组实验数据如下:

1.99

3.0

4.0

5.1

6.12

1.5

4.04

7.5

12

18.01

现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是                          

      (填函数表达式的序号).

A.             B.             C.            D.

查看答案和解析>>

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列{an}满足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得对任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足a1=
1
2
,an+1=
2an
1+
a
2
n
,设bn=
1
f(a1)
+
1
f(a2)
+…+
1
f(an)

(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn
m-8
4
成立,若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.
(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数;
(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.

查看答案和解析>>


同步练习册答案