数列对任意都满足.且. 则 8 查看更多

 

题目列表(包括答案和解析)

下列说法中:

①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;

②f(x)表示 -2x+2与-2x2+4x+2中的较小者,则函数f(x)的最大值为1;

③如果在[-1,∞上是减函数,则实数a的取值范围是(-8,-6

④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足

f(x·y)=x·f(y)+y·f(x),则f(x)是奇函数.

其中正确说法的序号是____________________(注:把你认为是正确的序号都填上).

查看答案和解析>>

下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)表示-2x+2与-2x2+4x+2中的较小者,则函数f(x)的最大值为1;
③如果在[-1,∞)上是减函数,则实数a的取值范围是(-8,-6];
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x·y)=x·f(y)+y·f(x),则f(x)是奇函数;
其中正确说法的序号是(    )(注:把你认为是正确的序号都填上)。

查看答案和解析>>

给出下列四个命题:
①函数y=|x|与函数表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是( )
A.1个
B.2个
C.3个
D.0个

查看答案和解析>>

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

对于函数y=f(x),部分x与y的对应关系如下表:
x 1 2 3 4 5 6 7 8 9
y 7 4 5 8 1 3 5 2 6
数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2012+x2013的值为(  )
A.9394B.9380C.9396D.9400

查看答案和解析>>


同步练习册答案