已知某海滨浴场的海浪高度是时间单位:h)的函数.记作.下表是某日各时的浪高数据: 0 3 6 9 12 15 18 21 24 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5 经长期观测.的曲线可近似地看成是函数. (1)求函数的最小正周期.振幅及函数表达式, (2)依据规定:当海浪高度高于时才对冲浪爱好者开放.请依据(1)的结论.一天内的上午时至晚上时之间.有多少时间可供冲浪者进行运动? 查看更多

 

题目列表(包括答案和解析)

已知某海滨浴场的海浪高度y(单位:米)与时间 t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:
t/时 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,函数y=f(t)可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T及函数表达 式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?

查看答案和解析>>

已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下表是某日各时的浪高数据:

t(h)

0

3

6

9

12

15

18

21

24

y(m)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.

(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;

(2)依据规定,当海浪高度高于1 m时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者进行运动?

查看答案和解析>>

已知某海滨浴场的海浪高度y(单位:米)与时间t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:

t(时)

0

3

6

9

12

15

18

21

24

y(米)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测,函数y=f(t)可近似地看成是函数

(1)根据以上数据,求出函数的最小正周期T及函数表达式(其中A>0,ω>0);

(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放

查看答案和解析>>

已知某海滨浴场的海浪高度(单位:米)与时间 (单位:时)的函数关系记作,下表是某日各时的浪高数据:

/时

0

3

6

9

12

15

18

21

24

/米

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测,函数可近似地看成是函数

(1)根据以上数据,求出函数的最小正周期T及函数表达 式(其中);

(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?

查看答案和解析>>

已知某海滨浴场的海浪高度y(单位:米)与时间 t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:
t/时3691215182124
y/米1.51.00.51.01.51.00.50.991.5
经长期观测,函数y=f(t)可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T及函数表达 式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?

查看答案和解析>>


同步练习册答案