20. 已知函数f(x)=alnx―ax―3(a∈R). (1)求函数f(x)的单调区间,(2)若函数y=f(x)的图象在点(2.f(2))处的切线的倾斜角为45°.对于任意t∈[1.2].函数g(x)=x3+x2[f′(x)+]在区间(t.3)上总不是单调函数.求m的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,给出两类直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出相应的m或n的值,若不存在,说明理由.
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(1)求a,b的值;
(2)若方程f(x)+m=0在[
1e
, e]
内有两个不等实根,求m的取值范围(其中e为自然对数的底).

查看答案和解析>>

已知函数f(x)=x2+bsinx-2,(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x-5)=F(5-x).
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-
12
f(x)-k
有几个零点?

查看答案和解析>>

(2012•蓝山县模拟)已知函数f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(1)求实数b,c的值;
(2)求函数f(x)在区间[-1,1]上的最小值;
(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围.

查看答案和解析>>

(2011•昌平区二模)已知函数f(x)=alnx-2ax+3(a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)函数y=f(x)的图象在x=2处的切线的斜率为
3
2
,若函数g(x)=
1
3
x3+x2[f(x)+m]
,在区间(1,3)上不是单调函数,求 m的取值范围.

查看答案和解析>>


同步练习册答案