题目列表(包括答案和解析)
(本题满分15分)如图,分别过椭圆E:
左右焦点
、
的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.已知当l1与x轴重合时,
,
.
![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得
为定值.若存在,求出M、N点坐标,若不存在,说明理由.
(本题满分15分)已知椭圆的中心在原点,焦点在
轴上,经过点
,离心率
.
![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为
、
,点
为直线
上任意一点(点
不在
轴上),
连结
交椭圆于
点,连结
并延长交椭圆于
点,试问:是否存在
,使得
成立,若存在,求出
的值;若不存在,说明理由.
(本小题满分15分)
如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,
连结PF,过原点O作直线PF的垂线交椭圆C的
右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com