题目列表(包括答案和解析)
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1)求
,
的标准方程, 并分别求出它们的离心率
;
2)设直线
与椭圆
交于不同的两点
,且
(其中
坐标原点),请问是否存在这样的直线
过抛物线
的焦点
若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
.(本小题满分14分)设抛物线
的方程为
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(1)当
的坐标为
时,求过
三点的圆的方程,并判断直线
与此圆的位置关系;
(2)求证:直线
恒过定点;
(3)当
变化时,试探究直线
上是否存在点
,使
为直角三角形,若存在,有几个这样的点,若不存在,说明理由.
本小题满分14分)
过
轴上动点
引抛物线
的两条切线
、
,
、
为切点,设切线
、
的斜率分别为
和
.
![]()
(1)求证:
;
(2)求证:直线
恒过定点,并求出此定点坐标;
(3)设
的面积为
,当
最小时,求
的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com