题目列表(包括答案和解析)
(本题满分13分)已知数列{an}的前n项和为Sn,且an=
(3n+Sn)对一切正整数n成立
(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(II)设
,求数列
的前n项和Bn;
(本题满分 13分)
集合
为集合
的
个不同的子集,对于任意不大于
的正整数
满足下列条件:
①
,且每一个
至
少含有三个元素;
②
的充要条件是
(其中
)。
为了表示这些子集,作
行
列的数表(即
数表),规定第
行第
列数为:
。
(1)该表中每一列至少有多少个1;若集合
,请完成下面
数表(填符合题意的一种即可);![]()
(2)用含
的代数式表示
数表
中1的个数
,并证明
;
(3)设数列
前
项和为
,数列
的通项公式为:
,证明不等式:
对任何正整数
都成立。
(本题满分13分)
已知数列{an}是首项为
,公比为
的等比数列,设
(n
N*),数列{
}满足![]()
(1)求数列{
}的通项公式;
(2)求数列{
}的前n项和![]()
(本题满分13分)
已知数列{an}是首项为
,公比为
的等比数列,设
(n
N*),数列{
}满足
(1)求数列{
}的通项公式;
(2)求数列{
}的前n项和![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com