在平面直角坐标系下.曲线 .曲线 .若曲线Cl.C2有公共点.则实数a的取值范围 . 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosθ
y=sinθ+m
(m是常数,θ∈(-π,π]是参数),若曲线C与x轴相切,则m=
 

查看答案和解析>>

在平面直角坐标系xOy中,以O为极点,Ox为极轴建立极坐标系,且两种坐标系长度单位一致.已知直线l的极坐标方程为ρcos(θ+
π
4
)=
2
2
-1,圆C在直角坐标系中的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),求直线l与圆C的公共点的个数.

查看答案和解析>>

在平面直角坐标系xoy中,曲线C1的参数方程为
x=4cosθ
y=2sinθ
(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.

查看答案和解析>>

在平面直角坐标系xOy中,曲线C1的参数方程为
x=cosφ
y=sinφ
(φ为参数),曲线C2的参数方程为
x=acosφ
y=bsinφ
(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=
π
2
时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当α=
π
4
时,l与C1,C2的交点分别为A1,B1,当α=-
π
4
时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.

查看答案和解析>>

在平面直角坐标系xOy中,直线l的参数方程为:
x=-2+
3
5
t
y=2+
4
5
t
(t为参数),它与曲线C:(y-2)2-x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为(2
2
4
)
,求点P到线段AB中点M的距离.

查看答案和解析>>


同步练习册答案