15.解:(1)由题意.得--2分 于是.当时等号成立. ----------4分 所以的最小值为. ---------- 6分 (2)因为.----------8分 由.得. 所以. ----------10分 所以 =----------12分 当为偶数时.,当为奇数时..-14分 查看更多

 

题目列表(包括答案和解析)

在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面积等于,求a、b;

(Ⅱ)若,求△ABC的面积.

【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.

第二问中。由于即为即.

时, , ,   所以时,得,由正弦定理得,联立方程组,解得,得到

解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分

又因为△ABC的面积等于,所以,得,………1分

联立方程,解方程组得.                 ……………2分

(Ⅱ)由题意得

.             …………2分

时, , ,           ……1分

所以        ………………1分

时,得,由正弦定理得,联立方程组

,解得,;   所以

 

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

((本小题满分14分)
设数列是公差为的等差数列,其前项和为
(1)已知
(ⅰ)求当时,的最小值;
(ⅱ)当时,求证:
(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>


同步练习册答案