已知椭圆C的左.右焦点坐标分别为,离心率是.椭圆C的左.右顶点分别记为A,B.点S是椭圆C上位于轴上方的动点.直线AS,BS与直线分别交于M,N两点. (1) 求椭圆C的方程, (2) 求线段MN长度的最小值, (3) 当线段MN的长度最小时.在椭圆C上的T满足:的面积为.试确定点T的个数. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知椭圆C:,左焦点,且离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.       求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

(本小题满分14分)

已知椭圆C:,左焦点,且离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.       求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

(本小题满分14分)

已知F1F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线CPQ两个不同的交点,点P关于x轴的对称点记为M.设=λ.

(Ⅰ)求曲线C的方程;

(Ⅱ)证明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.

 

 

查看答案和解析>>

(本小题满分14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于轴上方的动点,直线AP,BP与直线分别交于M,N两点.

(1)求椭圆C的方程;

(2)求线段MN的长度的最小值;

(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在上变化时,讨论S的大小与Q点的个数之间的关系.

查看答案和解析>>

(本小题满分14分) 如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C 长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.

(1)求椭圆C的方程;

(2)求点P的坐标;

(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.

查看答案和解析>>


同步练习册答案