题目列表(包括答案和解析)
(本小题共14分)已知
是由满足下述条件的函数构成的集合:对任意
,①方程
有实数根;②函数
的导数
满足
.
(Ⅰ)判断函数
是否是集合
中的元素,并说明理由;
(Ⅱ)集合
中的元素
具有下面的性质:若
的定义域为
,则对于任意
,都存在
,使得等式
成立.试用这一性质证明:方程
有且只有一个实数根;
(Ⅲ)对任意
,且
,求证:对于
定义域中任意的
,
,
,当
,且
时,
.
(本小题共14分)
已知函数
与
的图象相交于
,
,
,
分别是
的图象在
两点的切线,
分别是
,
与
轴的交点.
(I)求
的取值范围;
(II)设
为点
的横坐标,当
时,写出
以
为自变量的函数式,并求其定义域和值域;
(III)试比较
与
的大小,并说明理由(
是坐标原点).
(本小题共14分)
已知
(
).
(Ⅰ)求函数
的单调递减区间;
(Ⅱ)当
时,若对
有
恒成立,求实数
的取值范围.
(本小题共14分)
已知
(
).
(Ⅰ)求函数
的单调递减区间;
(Ⅱ)当
时,若对
有
恒成立,求实数
的取值范围.
(本小题共14分)
已知函数
.
(Ⅰ)当
时函数
取得极小值,求a的值;
(Ⅱ)求函数
的单调区间.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com