题目列表(包括答案和解析)
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)
一青蛙从点
开始依次水平向右和竖直向上跳动,其落点坐标依次是
,(如图所示,
坐标以已知条件为准),
表示青蛙从点
到点
所经过的路程。
(1) 若点
为抛物线![]()
准线上
一点,点
,
均在该抛物线上,并且直线![]()
经
过该抛物线的焦点,证明
.
(2)若点
要么落在
所表示的曲线上,
要么落在
所表示的曲线上,并且
,
试写出
(不需证明);
(3)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,求
的表达式.
![]()
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设二次函数
,对任意实数
,
恒成立;数列
满足
.
(1)求函数
的解析式和值域;
(2)试写出一个区间
,使得当
时,数列
在这个区间上是递增数列,
并说明理由;
(3)已知
,求:
.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设常数
,对
,
是平面上任意一点,定义运算“
”:
,
,
.
(1)若
,求动点
的轨迹C;
(2)计算
和
,并说明其几何意义;
(3)在(1)中的轨迹C中,是否存在两点
,使之满足
且
?若存在,求出
的取值范围,并请求出
的值;若不存在,请说明理由.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
平面直角坐标系xoy中,
轴上有一点A(0,1),在
轴上任取一点P,过点P作P A的垂线
.
(1)若
过点Q(3,2),求点P应取在何处;
(2)直线
能否过点R(3,3),并说明理由;
(3)点P在
轴上移动时,试确定直线
移动的区域(即直线
可以经过的点的集合),并在给定的坐标系中用阴影部分表示出来.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com