20.已知圆:及定点.点是圆上的动点.点在上.点在上. 且满足=2.·=. (1)若.求点的轨迹的方程, (2)若动圆和(1)中所求轨迹相交于不同两点.是否存在一组正实数.使得直线垂直平分线段.若存在.求出这组正实数,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

.(本小题满分14分)

已知圆M:及定点,点P是圆M上的动点,点Q在NP上,点G在MP上,且满足

(1)求点G的轨迹C的方程;

(2)过点K(2,0)作直线与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线使四边形OASB的对角线相等?若存在,求出直线的方程;若不存在,说明理由.

 

 

 

查看答案和解析>>

(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.

 

(Ⅰ)求抛物线和椭圆的标准方程;

(Ⅱ)过点的直线交抛物线两不同点,交轴于点,已知为定值.

(Ⅲ)直线交椭圆两不同点,轴的射影分别为,若点满足:,证明:点在椭圆上.

 

查看答案和解析>>

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

(本小题满分14分)

       给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程;

       (Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

查看答案和解析>>

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程

       (Ⅱ)试探究y轴上是否存在点(0, ,使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案