17. 某中学研究性学习小组.为了考察高中学生的作文水平与爱看课外书的关系.在本校高三年级随机调查了名学生.调査结果表明:在爱看课外书的人中有人作文水平好.另人作文水平一般,在不爱看课外书的人中有人作文水平好.另人作文水平一般. (Ⅰ)试根据以上数据建立一个列联表.并运用独立性检验思想.指出有多大把握认为中学生的作文水平与爱看课外书有关系? (Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为.某名爱看课外书且作文水平一般的学生也分别编号为.从这两组学生中各任选人进行学习交流.求被选取的两名学生的编号之和为的倍数或的倍数的概率. 附: 0. 10 0. 05 0. 025 0.010 0. 005 0. 001 2. 706 3. 841 5. 024 6. 635 7. 879 10. 828 临界值表: 查看更多

 

题目列表(包括答案和解析)

 

(本小题满分12分)

某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?

高中学生的作文水平与爱看课外书的2×2列联表

 

爱看课外书

不爱看课外书

总计

作文水平好

 

 

 

作文水平一般

 [来源:学。科。网Z。X。X。K]

 

 

总计

 

 

 

(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.

参考公式:,其中.

参考数据:

[来源:学*科*网]

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

 

 

查看答案和解析>>


(本小题满分12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表

 
爱看课外书
不爱看课外书
总计
作文水平
 
 
 
作文水平一般
 [来源:学。科。网Z。X。X。K]
 
 
总计
 
 
 
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中.
参考数据:
[来源:学*科*网]
0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

(本小题满分12分)

某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5月的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“均不小于25的概率

(2)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠   (参考公式:

查看答案和解析>>

(本小题满分12分)在数学研究性学习活动中,某小组要测量河对面两个建筑物的距离,作图如下,所测得的数据为米,,请你帮他们计算一下,河对岸建筑物的距离?

查看答案和解析>>

(本小题满分12分)在数学研究性学习活动中,某小组要测量河对面两个建筑物的距离,作图如下,所测得的数据为米,,请你帮他们计算一下,河对岸建筑物的距离?

查看答案和解析>>


同步练习册答案