题目列表(包括答案和解析)
(本小题满分12分)已知函数
.
(Ⅰ)求函数
的单调递增区间;
(Ⅱ)数列
满足:
,且
,记数列
的前n项和为
,
且
.
(ⅰ)求数列
的通项公式;并判断
是否仍为数列
中的项?若是,请证明;否则,说明理由.
(ⅱ)设
为首项是
,公差
的等差数列,求证:“数列
中任意不同两项之和仍为数列
中的项”的充要条件是“存在整数
,使
”
(本小题满分12分)
已知数列
中,
,
且
,其前
项和为
,且当
时,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)若
,令
,记数列
的前
项和为
.设
是整数,问是否存在正整数
,使等式
成立?若存在,求出
和相应的
值;若不存在,请说明理由.
(本小题满分12分)
已知数列
中,
,
且
,其前
项和为
,且当
时,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)若
,令
,记数列
的前
项和为
.设
是整数,问是否存在正整数
,使等式
成立?若存在,求出
和相应的
值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com