18. 已知圆C过点P(1.1).且与圆M:+=(r>0)关于直线x+y+2=0对称. (1)求圆C的方程, (2)设Q为圆C上的一个动点.求的最小值, (3)过点P作两条相异直线分别与圆C相交于A.B.且直线PA和直线PB的倾斜角互补.O为坐标原点.试判断直线OP和AB是否平行?请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是

(1)若P是圆M上的任意一点,求证:是定值;

(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;

(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

(本小题满分16分)
已知圆C过点P(1,1),且与圆M:(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)直线l过点Q(1,0.5),截圆C所得的弦长为2,求直线l的方程;
(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是
(1)若P是圆M上的任意一点,求证:是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

(本小题满分16分)

已知正三角形OAB的三个顶点都在抛物线上,其中O为坐标原点,设圆C是的外接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为,过圆M上任意一点P分别作圆C的两条切线PE、PF,切点为E、F,求的最大值和最小值

查看答案和解析>>

(本小题满分16分)已知点在双曲线上,圆C:与双曲线M的一条渐近线相切于点(1,2),且圆C被x轴截得的弦长为4.(Ⅰ)求双曲线M的方程;(Ⅱ)求圆C的方程;(Ⅲ)过圆C内一定点Q(s,t)(不同于点C)任作一条直线与圆C相交于点A、B,以A、B为切点分别作圆C的切线PA、PB,求证:点P在定直线l上,并求出直线l的方程.

 

查看答案和解析>>


同步练习册答案