综合考查解决基本数列的基本方法(定义法.分组裂项求和等).考查运算能力. 查看更多

 

题目列表(包括答案和解析)

若干个能唯一确定一个数列的量称为该数列的“基量”.{an}是公比为q的无穷等比数列,下列“基量”为
(1)(4)
(1)(4)
组;
(1)S1与S2;(2)a2与S3;(3)a1与an;(4)q与an(n为大于1的整数,Sn为{an}的前n项和)

查看答案和解析>>

若干个能唯一确定一个数列的量称为该数列的“基量”.{an}是公比为q的无穷等比数列,下列“基量”为    组;
(1)S1与S2;(2)a2与S3;(3)a1与an;(4)q与an(n为大于1的整数,Sn为{an}的前n项和)

查看答案和解析>>

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。满分12分。

查看答案和解析>>

已知数列中,,点在直线上,其中…。

(1)令,证明数列是等比数列;

(2)设分别为数列的前项和,证明数列是等差数列。

【解析】本试题主要考查了等差数列和等比数列的通项公式以及数列的求和的综合运用问题。既考查了概念,又考查了同学们的计算能力。

 

查看答案和解析>>


同步练习册答案