题目列表(包括答案和解析)
设p:函数f(x)=2|x-a|在区间(4,+∞)上单调递增,如果“綈p”是真命题.那么实数a的取值范围是( )
A.[4,+∞) B.(4,+∞)
C.[2,+∞) D.(2,+∞)
设命题P:函数f(x)=
(a>0)在区间(1,2)上单调递增;命题Q:不等式|x-1|-|x+2|<4a对任意x∈R都成立.若“P或Q”是真命题,“P且Q”是假命题,则实数a的取值范围是
A.
<a≤1
B.
≤a<1
C.0<a≤
或a>1
D.0<a<
或a≥1
已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.
已知椭圆x2+
=1的左、右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为
的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设点P、T的横坐标分别为x1,x2,证明:x1·x2=1;
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且
,求S
-S
的取值范围.
已知函数f(x)=alnx―ax―3(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图像在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数
在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数h(x)=(p-2)x―
―3,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
已知函数
(a为常数)
(1)若f(x)在区间[-1,2]上单调递减,求a的取值范围;
(2)若f(x)与直线y=-9相切:
(ⅰ)求a的值;
(ⅱ)设f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,若对任意的m∈(t,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com