4.要证:a2+b2-1-a2b2≤0.只要证明( ) A.2ab-1-a2b2≤0 B.a2+b2-1-≤0 C.-1-a2b2≤0 D.(a2-1)(b2-1)≥0 解析:因为a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0. 答案:D 查看更多

 

题目列表(包括答案和解析)

要证:a2+b2-1-a2b2≤0,只要证明(  )
A、2ab-1-a2b2≤0
B、a2+b2-1-
a4+b4
2
≤0
C、
a+b2
2
-1-a2b2≤0
D、(a2-1)(b2-1)≥0

查看答案和解析>>

要证:a2+b2-1-a2b2≤0,只要证明
[     ]
A.2ab-1-a2b2≤0
B.a2+b2-1-≤0
C.-1-a2b2≤0
D.(a2-1)(b2-1)≥0

查看答案和解析>>

设a+b+c=1,a2+b2+c2=1且a>b>c.求证:-
13
<c<0.

查看答案和解析>>

(2012•福州模拟)本题有(1)、(2)、(3)三个选做题,每题7分,请考生任选2题作答,满分l4分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填人括号中.
(1)选修4-2:矩阵与变换
利用矩阵解二元一次方程组
3x+y=2
4x+2y=3

(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=1.圆的参数方程为
x=1+rcosq
y=1+rsinq
(θ为参数,r>0),若直线l与圆C相切,求r的值.
(3)选修4-5:不等式选讲
已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.

查看答案和解析>>

20、若a,b∈R,则a2+b2<1是|a|+|b|<1成立的
必要而不充分
条件.

查看答案和解析>>


同步练习册答案