用数学归纳法可以证明许多与自然数有关的数学命题.其中包括恒等式.不等式.数列通项公式.整除性问题.几何问题等 ★重难点突破★ 重点:领会两个步骤的作用.运用数学归纳法证明一些简单的数学命题 难点:对不同类型的数学命题.完成从k到k+1的递推 重难点:了解数学归纳法的原理.正确运用数学归纳法 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
2bx
ax-1
(a≠0)
,满足f(1)=1,且使f(x)=2x成立的实数x只有一个,
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
2
3
,an+1=f(an)(n∈N+),
(ⅰ)试求a2,a3,a4,并由此猜想数列{an}的通项公式an
(ⅱ)用数学归纳法加证明你的猜想.

查看答案和解析>>

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

设正数数列{an}的前n项和为Sn,且Sn=
1
2
(an+
1
an
)
(n∈N+),试求a1、a2、a3,并猜想an,然后用数学归纳法进行证明.

查看答案和解析>>

大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=
1
2
n2+
1
2
n
,若an=n2,则
sn=12+22+32+…+n2=
1
3
n3+
1
2
n2+
1
6
n
,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.
问:(1)这种猜想,你认为正确吗?
(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?
(3)如果结论正确,请用数学归纳法给予证明.

查看答案和解析>>


同步练习册答案