题目列表(包括答案和解析)
已知
,
,
(Ⅰ)求
的值;
(Ⅱ)求
的值。
【解析】第一问中,因为
,∴![]()
∴
或
又
∴![]()
第二问中原式=![]()
=
进而得到结论。
(Ⅰ)解:∵
∴![]()
∴
或
……………………………………3分
又
∴
……………………………2分
(Ⅱ) 解:原式=
……………………2分
=
…………2分
=![]()
纠正以下解题过程的错误:
题:若|ab|+1=|a|+|b|,a,b为实数,求a,b.
解:原式可化为(|a|-1)(|b|-1)=0,
∴|a|=1,|b|=1,①
∴a=±1,b=±1,②
纠正①________;②________
(本小题满分12分)已知函数
是定义在
上的奇函数,且
,
(1)确定函数
的解析式;
(2)用定义证明
在
上是增函数;
(3)解不等式
.
【解析】第一问利用函数的奇函数性质可知f(0)=0
结合条件
,解得函数解析式
第二问中,利用函数单调性的定义,作差变形,定号,证明。
第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。
给出问题:已知
满足
,试判定
的形状.某学生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)设
外接圆半径为
.由正弦定理可得,原式等价于![]()
![]()
,
故
是等腰三角形.
综上可知,
是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com