8.设m为常数.如果函数y=lg(mx2-4x+m-3)的值域为R.则m的取值范围是 . 解析:因为函数值域为R.所以mx2-4x+m-3能取到所有大于0的数.即满足或m=0.解得0≤m≤4. 答案:[0,4] 查看更多

 

题目列表(包括答案和解析)

已知函数,其中a为常数,且函数yf(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行.若关于x的不等式对任意不等于1的正实数都成立,则实数m的取值集合是____________。

 

查看答案和解析>>

已知函数,其中a为常数,且函数yf(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行.若关于x的不等式对任意不等于1的正实数都成立,则实数m的取值集合是____________。

查看答案和解析>>

已知函数,其中a为常数,且函数yf(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行.若关于x的不等式对任意不等于1的正实数都成立,则实数m的取值集合是____________。

查看答案和解析>>

已知函数y=f(x)对于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:

对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;

(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;

(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行,求此平行线的距离.

查看答案和解析>>


同步练习册答案